Dualzahlen
Das Dualsystem ist eines der gebräuchlichen Zahlensysteme.
Die dezimale Zahl 6 sieht im Dualsystem folgendermaßen aus >>> 110
Umrechnung von Dualzahlen / Binärzahlen
Umrechnung Dezimal in Dual:
Natürliche Dezimalzahl:
6 : 2 = 3 Rest: 0
3 : 2 = 1 Rest: 1
1 : 2 = 0 Rest: 1
>>> Das Ergebnis von Dezimal 6 im Dualsystem ist >>> 110
Rationale Zahlen:
9.625
9.625
9 : 2 = 4 Rest: 1
4 : 2 = 2 Rest: 0
2 : 2 = 1 Rest: 0
1 : 2 = 0 Rest: 1
2 * 0,638 = 1,256 Rest: 1
2 * 0,256 = 0,512 Rest: 0
2 * 0,512 = 1,024 Rest: 1
2 * 0,024 = 0,048 Rest: 0
2 * 0,048 = 0,096 Rest: 0
>>> Das Ergebnis Dezimal 9.625 im Dualsystem >>> 1001.10100 ...
>>> Das Ergebnis Dezimal 9.625 im Dualsystem >>> 1001.10100 ...
Umrechnung Dual in Dezimal:
Natürliche Dezimalzahl:
0 * 1 = 0
1 * 2 = 2
1 * 4 = 4
>>> 0 + 2 + 4 = 6
Rationale Zahlen:
>>> 32 + 16 + 8 + 2 + 1 + 0.25 = 59,25
Rationale Zahlen:
2^7 | 2^6 | 2^5 | 2^4 | 2^3 | 2^2 | 2^1 | 2^0 | , | 2^-1 | 2^-2 | 2^-3 | 2^-4 |
128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 | , | 0.5 | 0.25 | 0.125 | 0.0625 |
1 | 1 | 1 | 0 | 1 | 1 | , | 0 | 1 |
>>> 32 + 16 + 8 + 2 + 1 + 0.25 = 59,25
Umrechnung Dual in Hexadezimal:
1001
Mithilfe der Tabelle in Hexadezimal (einfach für jede Zahl ablesen)
Hex Dual
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F 1111
>>> 9
Rechnen mit Dualzahlen
Addition
-
Dualzahlen werden von der rechten zur linken Stelle addiert
-
Die Übertragsbildung bei 1 + 1 muss beachtet werden (siehe Beispiel)
-
hier keine Beachtung der Stellenanzahl nötig, sollen die Zahlen z. B. in einem 8-bit Format ausgedrückt werden werden die führenden Stellen mit 0 aufgefüllt z. B. 00010010 (18 dezimal)
Beispiel:
Subtraktion
- Dualzahlen werden von der rechten zur linken Stelle subtrahiert
- 1. Schritt: Komplementbildung (beachte die Anzahl der Bit Stellen, hier 5 Stellen)
- 2. Schritt: Addition des Komplements
- Sollte ein Überlauf / Carry an der Stelle ganz links entstehen, muss dieser ignoriert werden (siehe Beispiel 2)
Beispiel 1:

Beispiel 2:
(letzter Übertrag wird ignoriert)
(letzter Übertrag wird ignoriert)

Bei der Addition und Subtraktion von Dualzahlen werden folgende Flags gesetzt:
- Negative Flag
- Zero Flag
- Carry Flag
- Overflow Flag
Negative Flag:
Zeigt an ob das Ergebnis negativ ist
Zero Flag:
Zeigt an ob das Ergebnis NULL ist
Carry Flag:
Overflow Flag: